Nuprl Lemma : single-threaded-relation
11,40
postcript
pdf
es
:ES,
P
:(E
),
R
:(E
E
).
(
e
:E. Dec(
P
(
e
)))
(
e
,
e'
:E. Dec(
R
(
e'
,
e
)))
R
=>
x
,
y
. (
x
<
y
)
Trans(E;
x
,
y
.
R
(
x
,
y
))
(
a
,
b
,
e
:E.
(
x
,
y
:E.
x
c
e
y
c
e
P
(
x
)
P
(
y
)
(((
x
R
y
)
(
x
=
y
))
(
y
R
x
)))
(
R
(
e
,
a
) &
R
(
e
,
b
))
(
P
(
e
) &
P
(
a
) &
P
(
b
))
(
z
:E.
(
R
(
e
,
z
) &
R
(
z
,
a
) &
P
(
z
)))
(
z
:E.
(
R
(
e
,
z
) &
R
(
z
,
b
) &
P
(
z
)))
(
a
=
b
))
(
m
,
m'
:E.
P
(
m
)
P
(
m'
)
(
e
:E. (
e
R
m
)
(
P
(
e
)))
(
e
:E. (
e
R
m'
)
(
P
(
e
)))
(
m
=
m'
))
(
e
,
e'
:E.
P
(
e
)
P
(
e'
)
(((
e
R
e'
)
(
e
=
e'
))
(
e'
R
e
)))
latex
Definitions
R1
=>
R2
,
i
j
,
False
,
A
B
,
x
,
y
.
t
(
x
;
y
)
,
,
{
T
}
,
A
c
B
,
x
.
t
(
x
)
,
t
T
,
x
:
A
.
B
(
x
)
,
A
,
P
&
Q
,
x
f
y
,
P
Q
,
x
(
s
)
,
Dec(
P
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
e
c
e'
,
R
!
,
es-r-immediate-pred(
es
;
R
;
e'
;
e
)
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
x
(
s1
,
s2
)
,
SWellFounded(
R
(
x
;
y
))
Lemmas
not-r-immediate-pred
,
decidable
es-r-immediate-pred
,
false
wf
,
nat
wf
,
ge
wf
,
nat
properties
,
event
system
wf
,
es-E
wf
,
decidable
wf
,
rel
implies
wf
,
trans
wf
,
es-causle
wf
,
le
wf
,
es-causl-swellfnd
,
not
wf
,
es-causl
wf
,
decidable
cand
,
decidable
existse-causl
origin